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Abstract

This paper proposes a unified analytical solution of the wave equation governing the propagation of the longitudinal

stress wave in an elastic rod. Within a single formula derived by using the Laplace transform and inverse transform, the

solution covers the contributions of the external excitations, the nonzero initial conditions and the inhomogeneous

boundary conditions altogether, including such boundary conditions that the dependent variables at the ends of the rod are

restricted with an equation. The proposed formula, particularly suitable for transient problems, could be regarded as an

exact interpolation function in the time domain, provided the rod works as a component in a complex system, etc. Four

examples are presented to show the applications of the solution.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The propagation of the longitudinal elastic waves of an elastic rod obeys a one-dimensional wave equation,
which can be solved either in the time domain or in the frequency domain. In the time domain, for a given
problem, the equation can be solved without much difficulty by using some conventional methods such as the
separation of variables, d’Alembert’s solution, and Green’s function. These methods can be found in
textbooks of partial differential equations or structural dynamics (see e.g. Refs. [1–5]). However, all of the
above-mentioned methods were used to solve individual problems only, i.e., they provide approaches for
solving given problems, rather than unified final solutions. Here, a unified solution would mean that the
formula of the solution alone covers all the contributions of the external excitations, the nonzero initial
conditions and the inhomogeneous boundary conditions altogether. A unified solution is important in
complex engineering problems in which a straight rod works as a member or a part of the whole structure,
such as a tall building subjected to longitudinal earthquake, or a pipe filled with water [6,7], or a system
consisting of several stepped rods [8].

On the other hand, in the frequency domain, the solution can be obtained by using the Fourier/Laplace
transform (see e.g. Refs. [4,5]). As an example, Hull [9] developed a closed-form series solution of a
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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longitudinal bar with a viscous damper at one end and fixed at the other. The explicit results were given in the
frequency domain only, namely the eigenvalues and eigenvectors only. Cortes and Elejabarrieta [10] solved a
similar problem, where a viscoelastic damper replaced the viscous damper, of which the solution was in the
form of a complex Fourier series with infinite terms, and the transient response in the time domain was
given by the real part of the series. It is believed that, to deal with the wave propagation in complex
engineering structures, the spectral element would be one of the most efficient methods among the frequency
domain methods [11]. More recently, Krawczuk et al. [12] presented a detailed review and further
investigations on the spectral element. Although the spectral element could be regarded as a unified solution in
the frequency domain, to describe the propagation of the longitudinal elastic wave in the time domain,
the numerical algorithm of inverse fast Fourier transform has to be used, which would inevitably induce
various errors.

Nevertheless, to solve problems directly in the time domain is necessary. Particularly, in some specific cases,
e.g. impact problems, a transient response of a structure is even important. Furthermore, in the above-
mentioned complex structures, two or more rods connect each other at the joints. At a joint, a compatibility
condition for the displacements is need for solving the whole system, e.g. the displacements of all the rods
connected at the joint are all the same. Such compatibility condition would demand the final form of the
variables of all the rods instead of an intermediate result. Therefore, for dealing with such complex engineering
structures, it would be desirable to derive a unified final solution for a single rod. To the knowledge of the
author, such a unified solution, either classical or generalized, is not yet available. The current investigation
would offer such a unified generalized solution in the time domain. Before doing so, we would like to review
the conventional methods in the time domain, to see how they deal with the problem, and what difficulties
they would encounter in order to obtain a unified solution.

First, we consider the method of separation of variables, which is a widely used method. Using this method,
one can obtain a Fourier-series solution associated with Duhamel’s integral. Nevertheless, the form of the
series depends strongly on the boundary conditions. If the boundary conditions were not homogeneous or not
simple (the exact meaning of the simple and complex boundary condition is given in Section 2), it would be
rather difficult or impossible to get solutions with this method. Furthermore, the uniform convergence of the
series should be ensured so that the solution has the second derivative in classical sense, which is still a
problem and often not discussed [13]. From the view of engineering practice, a solution in the form of the
Fourier series is not suitable for obtaining the transient response, since too many terms of the series should be
calculated in order to get a value at a single time instant (see Eq. (57) in Section 3.3), which is also a fault of
some methods in the frequency domain.

Second, d’Alembert’s method provides a general solution, which is in the form of the sum of two wave
functions. Thus, the task to solve a certain problem is to determine the form of the two wave functions so as to
satisfy the initial and boundary conditions. However, in the process to determine the two functions, some
algebraic equations or ordinary differential equations may encounter. In this sense, d’Alembert’s solution is
more an approach to obtain the results than a final solution. In other word, the method gives an unfinished
solution only. Even so, it is also widely used by many researchers to solve various kinds of problems, e.g. Shi
[14,15], Hu et al. [16], and Li et al. [17]. Although these researchers deal with different problems, the forms of
the formulas given by the above literatures are similar to that obtained in this paper (see Eqs. (74) and (80))
more or less.

Third, with Green’s function, one can get a generalized solution of some partial differential equations
including the wave equation in the time domain (see e.g. Ref. [1]). Based on the fundamental solution, the
method can be directly used for non-homogeneous equation with zero initial conditions and homogeneous
boundary conditions. For other kinds of initial- and boundary-value problems, an appropriate transform is
required to change the problem to an equivalent one with zero initial conditions and homogeneous boundary
conditions. Therefore, for a general problem, it would be difficult to write out a final solution with Green’s
function. Furthermore, being expressed as the integral of a series of Heaviside functions, the solution is not
clear enough in physical meaning, and inconvenient for engineering application.

In view of the above discussion, from each of the three methods, one can obtain merely the solving
process instead of a final solution. Although with the Fourier transform or the Laplace transform one can
solve the problems directly, the methods are mostly used in the frequency domain rather than the time
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domain, since it is normally impossible to perform the inverse transform analytically. In the current paper, we
shall devote ourselves to deriving a unified solution in time domain. We shall organize the rest of the paper as
follows:

In Section 2, the governing equation and the definite conditions are written in the form suitable for solving.
After that, by means of the Laplace transform the solution is obtained in the frequency domain. In Section 3,
after properly arranging the solution in the frequency domain, we perform the inverse transform, and obtain
the solution in the time domain. In Section 4, we first express the solution in a recurrence formula and an
accumulative formulation, and then we prove that the solution satisfies both the governing equation and the
initial and boundary conditions. At the end of the section, we present a relation between the velocity and
strain at any time and any point in the rod, particularly at both ends, which provides the possibility for solving
the problems with complex boundary conditions. Section 5 presents four examples that are solved using the
presented approach, and shows how to deal with different initial and boundary conditions with the approach.

2. The equation and its solution in the frequency domain

2.1. The governing equation

The well-known wave equation governing the longitudinal wave propagation in an elastic rod is

q2u

qt2
¼ a2 q

2u

qx2
þ f ðx; tÞ; 0pxpL; tX0, (1)

where t denotes time, x denotes the axial distance along the rod, u(x, t) the axial displacement of the rod. f(x, t)
is a known function of x and t, corresponding to the external force per unit length. The wave velocity a is then
given by a ¼

ffiffiffiffiffiffiffiffiffi
E=r

p
, in which E and r are the elastic modulus and the mass density of the rod, respectively.

It is noticed that the displacement is not unique when both ends of the rod are free, which means that
Eq. (1), with displacement as the unknowns, does not have unique solution, and is therefore, not appropriate
for accomplishing a unified solution. As contrasted with the displacement, the stress (or strain) and velocity
are equally important in engineering practice, particularly in experimental investigations. Therefore, we
introduce the normal strain �ðx; tÞ ¼ qu=qx and the velocity _uðx; tÞ ¼ qu=qt in Eq. (1), and arrive at a set of
equations

q _u
qx
¼

q�
qt
;
q _u
qt
¼ a2 q�

qx
þ f ðx; tÞ; 0pxpL; tX0 (2a,b)

or in the matrix form

q
qt

yðx; tÞ ¼ A
q
qx

yðx; tÞ þ f̄ ðx; tÞ; 0pxpL; tX0, (3)

where

yðx; tÞ �
_uðx; tÞ

a�ðx; tÞ

( )
; A �

0 a

a 0

� �
; f̄ðx; tÞ �

f ðx; tÞ

0

� �
. (4)

In Eq. (4) and in the following sections, the symbol ‘‘�’’ is used to define a variable, a function or a matrix
when they first be introduced. Clearly, a�ðx; tÞ and _uðx; tÞ have the same dimensions (in m/s). Even so, in the
rest of the paper, we shall still refer to a�ðx; tÞ as the strain for simplicity.

As a matter of fact, if u is smooth enough, by substituting � ¼ qu=qx, _u ¼ qu=qt into Eq. (2b), we may return
to Eq. (1).

2.2. The initial and boundary conditions

As usual, the initial conditions associated with Eq. (1) are given by

uðx; 0Þ ¼ ū0ðxÞ; _uðx; 0Þ ¼ I _uðxÞ, (5)
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where ū0ðxÞ and I _uðxÞ are known functions of x. In the case of Eq. (3), after defining the initial strain as
I �ðxÞ ¼ ðq=qxÞū0ðxÞ, the initial conditions may be expressible as

�ðx; 0Þ ¼ I �ðxÞ; _uðx; 0Þ ¼ I _uðxÞ. (6a,b)

To express the boundary conditions, we introduce two boundary functions j0ðtÞ and jLðtÞ defined by

j0ðtÞ ¼
1
2
½ 1þ I0 1� I0 �yð0; tÞ

jLðtÞ ¼
1
2
½ 1þ IL 1� IL �yðL; tÞ

t40 , (7)

where L is the length of the rod, I0 and IL are defined to show what a boundary function means, namely

j0ðtÞ ¼

_uð0; tÞ iff I0 ¼ 1

a�ð0; tÞ iff I0 ¼ �1

(
; jLðtÞ ¼

_uðL; tÞ iff IL ¼ 1;

a�ðL; tÞ iff IL ¼ �1;

(
t40: (8)

For example, we see from Eqs. (7) and (8) that the boundary function j0ðtÞ may represent either the velocity
or the strain at x ¼ 0. If j0ðtÞ represents the velocity _uð0; tÞ, then I0 ¼ 1, otherwise I0 ¼ �1. The same can be
said for the boundary function jL(t).

In particular, if the velocities and the strains are prescribed, the boundary functions as well as I0 and
IL may have one of the four expressions listed in Table 1, where the functions with a super bar indicate
any known function on the corresponding boundary. In the simple cases listed in Table 1, Eq. (7) may
reduce to

j0ðtÞ ¼
1
2
½ð1� I0Þða�̄0ðtÞÞ þ ð1þ I0Þ _̄u0ðtÞ�,

jLðtÞ ¼
1
2
½ð1� ILÞða�̄LðtÞÞ þ ð1þ ILÞ _̄uLðtÞ�. (9a,b)

There are, however, other kinds of boundary conditions when the variables satisfy some equations such as

g0ðuð0; tÞ; _uð0; tÞ; �ð0; tÞÞ ¼ 0,

gLðuðL; tÞ; _uðL; tÞ; �ðL; tÞÞ ¼ 0, (10a,b)

where g0 and gL are any functions defined at the two ends, respectively.
In the following text, if at least at one end, the boundary condition is expressible in the form like Eqs. (10a)

or (10b), we may say that there is a complex boundary condition. Otherwise, we may say that there are simple

boundary conditions. That is to say, the velocities or strains are known functions at both ends of the rod (as
given by Eq. (9a,b)). Later in Section 4, we shall establish other relation between _uðx; tÞ and �ðx; tÞ at both ends,
so that together with Eq. (10a) or (10b), we have enough equations to determine them, and thus the complex
boundary condition reduces to the simple one (see also Case 3 in Section 5). As a matter of fact, until Section
5, we need not known what the boundary functions stand for, and what values I0 and IL may have. Thus
before Section 5, we may regard Eq. (7a,b) as the boundary conditions.

In some cases, the displacements time progress at certain points of the rod would be more important. After
obtaining the velocity, we may calculate the displacement by the integral with the initial displacement ū0ðxÞ:

uðx; tÞ ¼

Z t

0

_uðx; tÞdtþ ū0ðxÞ. (11)
Table 1

the possible combinations of the boundary functions

Cases j0(t) (at x ¼ 0) I0 jL(t) (at x ¼ L) IL

1 �ð0; tÞ ¼ �̄0ðtÞ �1 _uðL; tÞ ¼ _̄uLðtÞ 1

2 �ð0; tÞ ¼ �̄0ðtÞ �1 �ðL; tÞ ¼ �̄LðtÞ �1

3 _uð0; tÞ ¼ _̄u0ðtÞ 1 _uðL; tÞ ¼ _̄uLðtÞ 1

4 _uð0; tÞ ¼ _̄u0ðtÞ 1 �ðL; tÞ ¼ �̄LðtÞ �1
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On some other cases, displacements at certain time instant would be interested. Since we have obtained the
strain at any time instant, we may use another integral to achieve this, namely

uðx; tÞ ¼

Z x

0

�ðy; tÞdyþ uð0; tÞ or uðx; tÞ ¼

Z L

x

�ðy; tÞdyþ uðL; tÞ, (12)

where uð0; tÞ and u(L, t) are the known boundary values at the ends, respectively. With the help of Eqs. (11)
and (12), we might say that Eq. (2a,b) is, not in the strict mathematical sense, equivalent to Eq. (1).
Considering that numerically calculating an integral will not cause large errors as derivate does, and we could
reasonably believe that there are no further difficulties to obtain displacement. We would, therefore, not
mention the displacement any more in the following context.

2.3. Solution in the frequency domain

The Laplace transform of both sides of Eq. (2) yields

sYðx; sÞ � yðx; 0Þ ¼ A
q
qx

Yðx; sÞ þ F̄ðx; sÞ, (13)

where

Yðx; sÞ � L½yðx; sÞ�; F̄ðx; sÞ � L½f̄ðx; tÞ�; yðx; 0Þ ¼
I _uðxÞ

aI �ðxÞ

( )
. (14)

The general solution of Eq. (13) is

Yðx; sÞ ¼ Ic diagfe
�sx=a; esx=agCðsÞ þ ~Yðx; sÞ, (15)

where

~Yðx; sÞ �
~Uðx; sÞ

a ~Eðx; sÞ

( )
; Ic ¼

1 1

�1 1

� �
; CðsÞ �

C1ðsÞ

C2ðsÞ

( )
. (16a2c)

In Eq. (16), ~Yðx; sÞ is the particular solution of Eq. (13), C1(s) and C2(s) are arbitrary functions of subsidiary
variable s. The particular solution of Eq. (13) is assumed of the form

~Yðx; sÞ ¼ Ic diagfe
�sx=a; esx=agPðx; sÞ, (17)

where Pðx; sÞ is an unknown function to be determined. Substituting Eq. (17) into Eq. (13) yields

P0ðx; sÞ ¼
1

2a
diagfesx=a;�e�sx=ageRðx; sÞ, (18)

where

~Rðx; sÞ �
~R1ðx; sÞ
~R2ðx; sÞ

( )
� ~IðxÞ þ ~Fðx; sÞ, (19)

~IðxÞ �
~I1ðxÞ
~I2ðxÞ

( )
�
�1

1

� �
aI �ðxÞ þ

1

1

� �
I _uðxÞ; ~Fðx; sÞ �

1

1

� �
F ðx; sÞ. (20a,b)

The solution of Eq. (18) is therefore

Pðx; sÞ ¼
1

2a

Z x

0

diagfesx=a;�e�sx=ag ~Rðx; sÞdx. (21)

Inserting Eq. (21) into Eq. (17) yields

~Yðx; sÞ ¼
1

2a
Ic

Z x

0

diagfe�sðx�xÞ=a;�esðx�xÞ=ag ~Rðx; sÞdx. (22)
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The Laplace transform of the boundary functions given by Eq. (7) gives

F0ðsÞ � L½j0ðtÞ� ¼
1
2
½ 1þ I0 1� I0 �Yð0; sÞ,

FLðsÞ � L½jLðtÞ� ¼
1
2
½ 1þ IL 1� IL �YðL; sÞ. (23)

Taking x ¼ 0 and L in Eq. (15), respectively, and then substituting the results into Eq. (23), we obtain

F0ðsÞ

FLðsÞ

( )
¼

I0 1

ILe
�sL=a esL=a

" #
C1ðsÞ

C2ðsÞ

( )
þ

0

~FLðsÞ

( )
, (24)

where

~FLðsÞ �
1

2a
IL

Z L

0

e�sðL�xÞ=a ~R1ðx; sÞdx�
1

2a

Z L

0

esðL�xÞ=a ~R2ðx; sÞdx. (25)

Let j0 � I0IL. Solving Eq. (24) gives

CðsÞ ¼
1

ð1� j0 e
�2sL=aÞ

E0ðsÞðUðsÞ � ~UðsÞÞ, (26)

where ð1=ð1� j0 e
�2sL=aÞÞE0ðsÞ is the inverse of the matrix on the right-hand side of Eq. (24) and

Eðx; sÞ � diagfe�sx=a; esx=agE0ðsÞ ¼
I0 e
�sx=a �I0 e

�sðLþxÞ=a

�j0 e
�sð2L�xÞ=a e�sðL�xÞ=a

" #
,

UðsÞ �
F0ðsÞ

FLðsÞ

( )
; ~UðsÞ �

0

~ULðsÞ

( )
. (27)

The solution of Eq. (13) is therefore

Yðx; sÞ ¼
1

ð1� j0 e
�2sL=aÞ

IcEðx; sÞðUðsÞ � ~UðsÞÞ þ ~Yðx; sÞ. (28)

It is worth noting that Eq. (26) is a relation between C(s) and the boundary functions (instead
of the prescribed functions on the boundary). Eq. (28) gives, therefore, a relation between Y(x, s) and
its boundary value Y(0, s) and Y(L, s) expressed by U(s) and ~UðsÞ. The values of Y(x, s) at both ends
are not necessarily known functions before solving. Considering that one of the aims of the paper is to
obtain a solution that can be used in the complex engineering structures, these kinds of relations are
necessary.

3. The inverse transform

3.1. Performing the inverse transform

Usually, the inverse transform of the right-hand side of Eq. (28) could not be analytically archived, except in
some simple special cases. To make the inverse transform possible, we first multiply both sides of Eq. (28) by
(1–j0e

�2sL/a) and have

ð1� j0 e
�2sL=aÞYðx; sÞ ¼ Qðx; sÞ, (29)

where

Qðx; sÞ � IcEðx; sÞUðsÞ � IcEðx; sÞ ~UðsÞ þ ð1� j0 e
�2sL=aÞ ~Yðx; sÞ. (30)

The inverse transform of the left-hand side of Eq. (29) is obtained by making use of the shift rule for the
Laplace transform

L�1½ð1� j0 e
�2sL=aÞYðx; sÞ� ¼ yðx; tÞ � j0yðx; t� 2L=aÞHðt� 2L=aÞ, (31)
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where HðtÞ is the Heaviside function defined by

HðtÞ ¼
1; t40;

0; tp0:

(
(32)

The inverse transform of Eq. (29) may lead to

yðx; tÞ ¼ j0yðx; t� TÞHðt� TÞ þ qðx; tÞ, (33)

where

T � 2L=a; qðx; tÞ � L�1½Qðx; sÞ�. (34a,b)

In the following text, T is referred to as a phase, which has the same meaning as used in the problem of water
hammer, where a phase expresses the time interval when the elastic wave travels from one end to another and
then returns. Eq. (33) reveals that the solution at time instant t is related to the solution at t– T. In the first
phase, we have

yðx; t� TÞHðt� TÞ ¼ 0; 0otpT . (35)

Eq. (33) reduces to

yðx; tÞ ¼ qðx; tÞ; 0otpT . (36)

Eq. (33) implies that once having the solutions in 0otpT, we may obtain the solutions at any time instant with
Eq. (33) step by step, on condition that the right-hand side term q(x,t) given by Eq. (34b) is known. In order to
obtain q(x, t), we have to rearrange Eq. (30), since the second and the third terms of Eq. (30) are not suitable for
performing the inverse transform analytically. Recalling Eqs. (19), (22) and (25), we can write Eq. (30) as

Qðx; sÞ ¼ IcQBðx; sÞ þ
1

2a
IcQI ðx; sÞ þ

1

2a
IcQF ðx; sÞ, (37)

where

QI ðx; sÞ �

Z x

0

�a e�sðx�xÞ=a ~I1ðxÞ

aj0 e
�sð2L�xþxÞ=a ~I2ðxÞ

( )
dx

þ

Z L

x

�aj0 e
�sð2Lþx�xÞ=a ~I1ðxÞ

a e�sðx�xÞ=a ~I2ðxÞ

( )
dx�

Z L

0

aI0 e
�sðxþxÞ=a ~I2ðxÞ

�aIL e�sð2L�x�xÞ=a ~I1ðxÞ

( )
dx, (38)

QF ðx; sÞ �

Z x

0

e�sðx�xÞ=aF ðx; sÞ

j0 e
�sð2L�xþxÞ=aF ðx; sÞ

( )
dx

þ

Z L

x

j0 e
�sð2Lþx�xÞ=aF ðx; sÞ

e�sðx�xÞ=aF ðx; sÞ

( )
dx�

Z L

0

I0 e
�sðxþxÞ=aF ðx; sÞ

IL e�sð2L�x�xÞ=aF ðx; sÞ

( )
dx; (39)

QB �
I0 e
�sx=aF0 � I0 e

�sðLþxÞ=aFL

�I0IL e�sð2L�xÞ=aF0 þ e�sðL�xÞ=aFL

( )
. (40)

It is very important to notice that each integrand in Eqs. (38) and (39) contain a factor like e�sc with cX0
inside the interval of the corresponding integral, which makes the explicit results of the inverse Laplace
transform possible. Accordingly, we can denote

Bðx; tÞ � L�1½QBðx; sÞ�; Iðx; tÞ � L�1½QI ðx; sÞ�; Fðx; tÞ � L�1½QF ðx; sÞ� (41a2c)

and

qBðx; tÞ � IcBðx; tÞ; qI ðx; tÞ �
1

2a
IcIðx; tÞ; qF ðx; tÞ �

1

2a
IcFðx; tÞ (42a2c)
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in view of Eqs. (34), (37), (41) and (42) we have

q ¼ L�1½Qðx; sÞ� ¼ qBðx; tÞ þ qI ðx; tÞ þ qF ðx; tÞ. (43)

Obviously, qB(x,t) is related to the boundary conditions at both ends, qI(x, t) to the initial conditions, and
qF(x, t) to f(x, t) the external force per unit length. Therefore, we may refer to them as the boundary term, the

initial term and the forced term, respectively. Thus, we may express the elements of three terms as

qBðx; tÞ ¼
_uBðx; tÞ

a�Bðx; tÞ

( )
; qI ðx; tÞ ¼

_uI ðx; tÞ

a�I ðx; tÞ

( )
; qF ðx; tÞ ¼

_uF ðx; tÞ

a�F ðx; tÞ

( )
. (44a2c)

Moreover, j0yðx; t� 2L=aÞ will be referred to as the historical term. In the follow three subsections, we shall
find out the expressions of the three terms given by Eqs. (44a–c), one after another.

3.2. Obtaining the boundary term

The inverse Laplace transform of Eq. (41a) may lead to

Bðx; tÞ �
I0j0ðt� x=aÞHðt� x=aÞ � I0jLðt� ðLþ xÞ=aÞHðt� ðLþ xÞ=aÞ

�j0j0ðt� ð2L� xÞ=aÞHðt� ð2L� xÞ=aÞ þ jLðt� ðL� xÞ=aÞHðt� ðL� xÞ=aÞ

( )
. (45)

Obviously, the two components of vector B are in the form similar to the wave functions of d’Alembert’s
solution, namely,

Bðx; tÞ ¼
B1ðt� x=aÞ

B2ðtþ x=aÞ

( )
. (46)

Considering that limt!0þHðtÞ ¼ 1, we may define in the current paper that for all the functions of the form
gðtÞ ¼ f ðtÞHðtÞ, the initial value of g(t) may be defined as

gð0Þ � limt!0þf ðtÞHðtÞ ¼ limt!0þ f ðtÞ ¼ f ð0þÞ. (47)

Eq. (47) implies that Hð0Þ, whatever it may be, has no effect on g(0), and is, therefore, not important. In
particular, we could define

j0ð0Þ � limz!0þj0ðzÞHðzÞ; jLð0Þ � limz!0þjLðzÞHðzÞ. (48)

Furthermore, Eq. (45) suggests that we could also define

j0ðzÞjzo0 ¼ 0; jLðzÞjzo0 ¼ 0 (49)

with Eqs. (48) and (49) in mind, we could, for the sake of short description, omit HðzÞ and rewrite Eq. (45) as

Bðx; tÞ ¼
B1ðt� x=aÞ

B2ðtþ x=aÞ

( )
¼

I0j0ðt� x=aÞ � I0jLðt� ðLþ xÞ=aÞ

�j0j0ðt� ð2L� xÞ=aÞ þ jLðt� ðL� xÞ=aÞ

( )
. (50)

It should be pointed out that Eq. (48) gives the initial value of the boundary conditions, instead of the
boundary value of the initial conditions. Normally, the two values are not equal to each other.

3.3. Obtaining the forced term

From Eq. (39), we see that all the terms in QF(x,s) are of the formZ b

a
e�scF ðx; sÞdx; cX0. (51)

Thus,

L�1
Z b

a
e�scF ðx; sÞdx ¼

Z b

a
f ðx; t� cÞHðt� cÞdx cX0. (52)
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Since f ðx; t� cÞHðt� cÞ ¼
toc

0: and a finite single value f(x, 0) has no effect on the result of the integral, we can
assuming that if the argument zX0 then

f ðx; zÞ ¼ 0; 0pxpL. (53)

Therefore, with Eq. (53) in mind, we can omit the Heaviside function Hðt� cÞ and write for
simplicity Z b

a
f ðx; t� cÞHðt� cÞdx ¼

Z b

a
f ðx; t� cÞdx. (54)

Thus, the inverse transform of QF(x,s) yields

Fðx; tÞ ¼ L�1½QF ðx; sÞ� ¼
f 1ðx; t� x=aÞ

f 2ðx; tþ x=aÞ

( )
, (55)

where

f 1ðx; t� x=aÞ

f 2ðx; tþ x=aÞ

( )
�

Z x

0

f ðx; t� ðx� xÞ=aÞ

j0f ðx; t� ð2L� xþ xÞ=aÞ

( )
dxþ

Z L

x

j0f ðx; t� ð2Lþ x� xÞ=aÞ

f ðx; t� ðx� xÞ=aÞ

( )
dx

�

Z L

0

I0f ðx; t� ðxþ xÞ=aÞ

ILf ðx; t� ð2L� x� xÞ=aÞ

( )
dx: (56)

It is not difficult to verify that Eq. (56) remains valid, even if f(x, t) is a centralized force acted on xp, namely
f(x, t) ¼ d(x–xp)p(t).

In contrast to the integral of Eq. (56), we would like to look at the results obtained by using the method of
separation of variables. For instance, when a rod with zero initial condition and both ends fixed, the latter will
results in an integral like

uðx; tÞ ¼
X1
n¼1

sinðnpx=LÞ

Z t

0

Z L

0

f ðx; tÞ sinðnpx=LÞ sinðnpaðt� tÞ=LÞdxdt. (57)

Clearly, once a numerical result is needed, Eq. (57) will be calculated for every n, since the index
n appears within the sine functions. This means that at any time instant, one must calculate enough
numbers of integrals in order to get satisfying precision, which is time consuming. Furthermore,
if the boundary conditions have to transform into a nonzero f(x, t), as does with the Green function
and the method of separation of variables, some additional integral(s) will also inevitably appear. However,
in the current approach, the integral is needed only when f(x, t) is nonzero, the initial and boundary
conditions result in no integral. Moreover, the calculation of the integrals given by Eq. (56) is much simpler
than Eq. (57).
3.4. Obtaining the initial term

Eq. (38) shows that all the terms in QI(x,s) are of the formZ b

a
e�scIðxÞdx; cX0: (58)

Considering that

L�1½e�sc� ¼ dðt� cÞ; cX0, (59)
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where d(t–c) is the Dirac delta function. Therefore, the inverse transform of QI(x, s) yields

Iðx; tÞ � L�1½QI ðx; sÞ� ¼

Z x

0

~I1ðxÞdðt� ðx� xÞ=aÞ

j0
~I2ðxÞdðt� ð2L� xþ xÞ=aÞ

( )
dx

þ

Z L

x

j0
~I1ðxÞdðt� ð2Lþ x� xÞ=aÞ

~I2ðxÞdðt� ðx� xÞ=aÞ

( )
dx�

Z L

0

I0 ~I2ðxÞdðt� ðxþ xÞ=aÞ

IL
~I1ðxÞdðt� ð2L� x� xÞ=aÞ

( )
dx. (60)

Thus, each integral in Eq. (60) could be obtained (see e.g. Ref. [5])Z b

a
f ðxÞdðx� zÞdx ¼

0; ze½a; b�;

f ðzÞ; z 2 ða;bÞ;

(
(61)

where a and b are any real number satisfying 0paob. Introducing the notation

Gðz; a; bÞ �
0; ze½a; b�;

1; z 2 ða;bÞ:

(
(62)

Eq. (61) can be written as Z b

a
f ðxÞdðx� zÞdx ¼ f ðzÞGðz; a; bÞ. (63)

Note that the integral of Eq. (63) may have different values at z ¼ a and z ¼ b, and so does the function G
given by Eq. (62). Similar to unit step function H, there are several possible definitions available. We will see
later that the definite value of G at the two points will make the solution continuous. Moreover, From Eq. (63)
we have Gðz; a; bÞ ¼

a¼b
0. Finally, from Eqs. (60) and (61), and considering that

dðx� xÞ ¼ dðx� xÞ; dðkxÞ ¼
1

k
dðxÞ ðk40Þ, (64)

we arrive at

Iðx; tÞ ¼
I1ðx� atÞ

I2ðxþ atÞ

( )
¼ a

~I1ðx� atÞGðat; 0;xÞ

~I2ðatþ xÞGðat; 0;L� xÞ

( )

� a
I0 ~I2ðat� xÞGðat;x;Lþ xÞ

IL
~I1ð2L� x� atÞGðat;L� x; 2L� xÞ

( )
þ a

j0
~I1ð2Lþ x� atÞGðat;Lþ x; 2LÞ

j0
~I2ðat� 2Lþ xÞGðat; 2L� x; 2LÞ

( )
. (65)

As a mater of fact, the two components of vector I(x, t) given by Eq. (65) can be written as

I1ðx� atÞ ¼ a

~I1ðx� atÞ; 0oatox;

�I0 ~I2ðat� xÞ; xoatoLþ x;

j0
~I1ð2Lþ x� atÞ; Lþ xoato2L;

8>><>>:
I2ðxþ atÞ ¼ a

~I2ðatþ xÞ; 0oatoL� x;

�IL
~I1ð2L� x� atÞ; L� xoato2L� x;

j0
~I2ðatþ x� 2LÞ; 2L� xoato2L:

8>><>>: (66)

Eqs. (65) and (66) indicate that like the vector B(x, t) expressed by Eq. (46), I(x, t) also has the form similar
to d’Alembert’s wave functions. Moreover, Eq. (66) shows that I1(x–at) is discontinuous when at ¼ x or
at ¼ L+x, and I2(x+at) is discontinuous when at ¼ L– x or at ¼ 2L. (see Case 2 of Section 5). To be more
exact, the left limit and the right limit at one of the four points are not equal, namely,

lim
at!x�0

I1ðx� atÞ ¼ a ~I1ð0Þ; lim
at!xþ0

I1ðx� atÞ ¼ �aI0 ~I2ð0Þ,

lim
at!Lþx�0

I1ðx� atÞ ¼ �aI0 ~I2ðLÞ; lim
at!Lþxþ0

I1ðx� atÞ ¼ aj0
~I1ðLÞ,
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lim
at!L�x�0

I2ðxþ atÞ ¼ a ~I2ðLÞ; lim
at!L�xþ0

I2ðxþ atÞ ¼ �aI0 ~I1ðLÞ,

lim
at!2L�x�0

I2ðxþ atÞ ¼ �aI0 ~I1ð0Þ; lim
at!2L�xþ0

I2ðxþ atÞ ¼ aj0
~I2ð0Þ. (67)

Therefore like the solution obtained by Green’s function method, the proposed solution is generalized
rather than a classical solution in a strict sense. Obviously, from Eq. (65), it can be concluded that when t4T

the initial term vanishes. Namely,

I1ðx� atÞjt4T ¼ 0; I2ðatþ xÞjt4T ¼ 0; 8x 2 ½0;L�. (68)

Eq. (68) indicates that the initial conditions have their direct effect on the solution only in the first phase (see
also Eq. (80) in Section 4.1).

4. Proofs and discussions

So far, the solution of Eq. (3) has been obtained as shown in Eq. (33) of which the right-hand term q(x,t)
has been found by means of the inverse Laplace transform. In this section, the solution will first be
expressed in two formulas suitable for application. Then, it will be verified that the solution satisfies
the governing equation, the boundary conditions and the initial conditions. Finally, some relations
between the velocity and strain are established, which is important for dealing with complex boundary
conditions.

4.1. Deriving the recurrence formula and accumulative formula

When 0ptpT, the historical term y(x, t–T) vanishes, Eq. (33) results in

yðx; tÞ ¼ qBðx; tÞ þ qI ðx; tÞ þ qF ðx; tÞ; 0ptpT . (69)

Therefore, when 0ptpT, we can obtain the solution of Eq. (3) directly. After that, the initial term qI(x,t)
vanishes, and Eq. (33) becomes

yðx; tÞ ¼ j0yðx; t� TÞ þ qBðx; tÞ þ qF ðx; tÞ; t4T . (70)

The first term of the right-hand side of Eq. (70) is determined by Eq. (69), we can, therefore, get the solution
in the next time interval Tptp2T, the same may be done for 2Tptp3T and so on. In particular, the velocity
and strain can be expressed as

_uðx; tÞ ¼ _uBðx; tÞ þ _uI ðx; tÞ þ _uF ðx; tÞ; 0ptpT ;

_uðx; tÞ ¼ _uðx; t� TÞ þ _uBðx; tÞ þ _uF ðx; tÞ; t4T
(71)

and

�ðx; tÞ ¼ �Bðx; tÞ þ �I ðx; tÞ þ �F ðx; tÞ; 0ptpT ;

�ðx; tÞ ¼ �ðx; t� TÞ þ �Bðx; tÞ þ �F ðx; tÞ; t4T :
(72)

Introducing the notation

t ¼ t� nT ; 0ptpT ; n ¼ 0; 1; 2; . . . (73)

and substituting Eq. (73) into Eqs. (69) and (70) yields

yðx; tÞ ¼ qðx; tÞ,

yðx; tþ nTÞ ¼ j0yðx; tþ ðn� 1ÞTÞ þ qðx; tþ nTÞ; n ¼ 1; 2; . . . . (74a,b)

Eqs. (74a,b) are referred to as the recurrence formula. It indicates that in the nth phase, the solution
is determined by the solution in the prior phase, together with the boundary term and the forced
term within the same phase. With the recurrence formula, we can obtain the solution at any time
instance step by step. In the text below, unless otherwise stated, we take 0ptpT and the index
n ¼ 0,1,2,y .
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We now try to delimit the historical term yðx; tþ ðn� 1ÞTÞ in Eq. (74b). Multiplying both sides of the ith
equation in Eqs. (74a,b) by ji

0 ¼ ð�1Þ
i, and then summing up the results over i, we haveXn

i¼0

ji
0yðx; tþ iTÞ ¼

Xn

i¼1

jiþ1
0 yðx; tþ ði � 1ÞTÞ þ

Xn

i¼0

ji
0qðx; tþ iTÞ. (75)

The left-hand term of Eq. (75) can be written asXn

i¼0

ji
0yðx; tþ iTÞ ¼ jn

0yðx; tþ nTÞ þ
Xn�1
i¼0

ji
0yðx; tþ iTÞ. (76)

The first term on the right-handside of Eq. (75) can be written asXn

i¼1

ji
0yðx; tþ ði � 1ÞTÞ ¼

j¼i�1Xn�1
j¼0

j
jþ2
0 yðx; tþ jTÞ ¼

i¼j
Xn�1
i¼0

ji
0yðx; tþ iTÞ. (77)

Note that

j0 ¼ �1; jn
0 ¼ j�n

0 ; jnþi
0 ¼ jn�i

0 . (78)

Inserting Eqs. (76)–(78) into Eq. (75) gives

yðx; tþ nTÞ ¼
Xn

i¼0

jn�i
0 qðx; tþ iTÞ. (79)

In view of Eq. (68) and qI ðx; tþ iTÞji40 ¼ 0, Eq. (77) can be rewritten as

yðx; tþ nTÞ ¼ jn
0qI ðx; tÞ þ

Xn

i¼0

jn�i
0 ½qBðx; tþ iTÞ þ qF ðx; tþ iTÞ�. (80)

Eq. (80) is referred to as the accumulative formula. The right-hand terms of Eq. (80) are determined by
Eq. (42) associated with Eqs. (50), (56) and (65).

It should be mentioned that formulas similar to the recurrence formula and the accumulative formula could
be found in several other literatures [11–15]. Nevertheless, in all of these references, the formulas are expressed
by means of d’Alembert’s wave functions instead of the displacements, and are used only for dealing with
certain problems.

4.2. Verifying the satisfaction of the governing equation

Eq. (69) has shown that the solution involves only three terms qI(x, t), qB(x, t) and qF(x, t). Here, we shall
prove that the boundary term qB(x, t) and the initial term qI(x, t) satisfy a homogeneous governing equation,
and the forced term qF(x, t) alone satisfies the non-homogeneous governing equation.

Considering that

d

dz
HðzÞ ¼ dðzÞ, (81)

we can verify without difficulties that

1

a

q
qt

�B1ðt� x=aÞ

B2ðtþ x=aÞ

( )
¼

q
qx

B1ðt� x=aÞ

B2ðtþ x=aÞ

( )
. (82)

Premultiplying both sides of Eq. (82) by IcðI
�1
c AIcÞ, and considering that (see Eqs. (4) and (16b))

I�1c AIc ¼
�a 0

0 a

� �
, (83)

we have

q
qt

qBðx; tÞ ¼ A
q
qx

qBðx; tÞ. (84)
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Similarly, from

1

a

q
qt

�I1ðx� atÞ

I2ðxþ atÞ

( )
¼

q
qx

I1ðx� atÞ

I2ðxþ atÞ

( )
, (85)

we may have

q
qt

qI ðx; tÞ ¼ A
q
qx

qI ðx; tÞ. (86)

Eqs. (84) and (86) indicate that for all t40 and 0pxpL, qBðx; tÞ and qI ðx; tÞ satisfy a homogeneous
governing equation.

Furthermore, from Eqs. (55) and (56), we have

q
qx

f 1ðx; t� x=aÞ

f 2ðx; tþ x=aÞ

( )
¼

1

a

q
qt

�f 1ðx; t� x=aÞ

f 2ðx; tþ x=aÞ

( )
þ

f ðx; tÞ � j0f ðx; t� 2L=aÞ

j0f ðx; t� 2L=aÞ � f ðx; tÞ

( )
. (87)

Premultiplying both sides of Eq. (87) by ð1=2aÞIcðI
�1
c AIcÞ, and considering Eqs. (55) and (83), we have

q
qt

qF ðx; tÞ � A
q
qx

qF ðx; tÞ ¼ f̄ðx; tÞ � j0f̄ðx; t� TÞ. (88)

Recalling that f ðx; tÞ ¼ 0; tp0, we know that in Eq. (88), f̄ðx; t� TÞ ¼ 0, provided 0otpT . Combining
Eqs. (84) and (86), we find that, within 0otpT , Eq. (88) reduce to Eq. (74a), which means that the solution
yðx; tÞ satisfies the governing equation in the first phase.

With Eq. (88) in mind, carrying out the calculation q=qt Eq. (70)—Aðq=qxÞ Eq. (70) yields

q
qt

yðx; tÞ � A
q
qx

yðx; tÞ ¼ f̄ðx; tÞ þ j0
q
qt

yðx; t� TÞ � A
q
qx

yðx; t� TÞ � f̄ðx; t� TÞ

� �
. (89)

It can be concluded from Eq. (89) that for all t40 and 0pxpL, the solution expressed with Eq. (74b) could
satisfy the governing equation, provided yðx; t� TÞ satisfies the governing Eq. (3). For the case of centralized
force namely f ðx; tÞ ¼ dðx� xpÞpðtÞ, differentiating Eq. (56) with respect to t and x, we found Eq. (87) also
holds true, and so does Eq. (89).
4.3. Verifying the satisfaction of the boundary conditions

In this section, we shall prove that qF ðx; tÞ and qI ðx; tÞ satisfy homogeneous boundary conditions, and
qBðx; tÞ alone satisfies the boundary conditions. Considering Eq. (44c) taking x ¼ 0 and L in Eq. (56), and then
substituting the results into Eq. (42c) gives

qF ð0; tÞ ¼
_uF ð0; tÞ

a�F ð0; tÞ

( )
¼

1

2a

ð1� I0Þ

ð1þ I0Þ

( )
F B0ðt; ILÞ,

qF ðL; tÞ ¼
_uF ðL; tÞ

a�F ðL; tÞ

( )
¼

1

2a

ð1� ILÞ

�ð1þ ILÞ

( )
FBLðt; I0Þ (90)

in which

F B0ðt; ILÞ �

Z L

0

½f ðx; t� x=aÞ � ILf ðx; t� ð2L� xÞ=aÞ�dx,

F BLðt; I0Þ �

Z L

0

½f ðx; t� ðL� xÞ=aÞ � I0f ðx; t� ðLþ xÞ=aÞ�dx: (91)
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Taking x ¼ 0 and L in Eq. (60) and inserting into Eqs. (42b) and (44b) yields

qI ð0; tÞ ¼
_uI ð0; tÞ

a�I ð0; tÞ

( )
¼

1

2

ð1� I0Þ

ð1þ I0ÞÞ

( )
IB0ðtÞ,

qI ðL; tÞ ¼
_uI ðL; tÞ

a�I ðL; tÞ

( )
¼

1

2

ðIL � 1Þ

ðIL þ 1Þ

( )
IBLðtÞ (92)

in which

IB0ðtÞ �
I _uðatÞ þ aI �ðatÞ; 0otoL=a;

IL½aI �ð2L� atÞ � I _uð2L� atÞ�; L=aoto2L=a;

(

IBLðtÞ �
aI �ðL� atÞ � I _uðL� atÞ; 0otoL=a;

I0½aI �ðat� LÞ þ I _uðat� LÞ�; L=aoto2L=a:

(
(93)

Eqs. (90) and (92) imply that if I0 ¼ 1 then _uF ð0; tÞ ¼ _uI ð0; tÞ ¼ 0, and if I0 ¼ �1 then. The entire same, if
IL ¼ 1 then _uF ðL; tÞ ¼ _uI ðL; tÞ ¼ 0, and if IL ¼ �1 then �F ðL; tÞ ¼ �I ðL; tÞ ¼ 0. These mean that, the initial term
and the forced term can satisfy a homogeneous boundary condition.

Now we consider the boundary term. Letting x ¼ 0 and L in Eq. (50), and then inserting the results into Eq.
(42a), we have

qBð0; tÞ ¼
_uBð0; tÞ

a�Bð0; tÞ

( )
¼

I0

�I0

( )
j0ðtÞ þ

ð1� I0Þ

ð1þ I0Þ

( )
jLðt� L=aÞ,

qBðL; tÞ ¼
_uBðL; tÞ

a�BðL; tÞ

( )
¼

1

1

( )
jLðtÞ þ

I0ð1� ILÞ

�I0ð1þ ILÞ

( )
j0ðt� L=aÞ. (94)

Eq. (94) implies that if we take boundary function as the velocity at the end x ¼ 0, then I0 ¼ 1, Eq. (94)
results in

_uBð0; tÞ ¼ j0ðtÞ; _uI ð0; tÞ ¼ _uF ð0; tÞ ¼ 0. (95)

At the same time, from Eqs. (90) and (92), we have known that _uI ð0; tÞ ¼ _uF ð0; tÞ ¼ 0, so that if 0otpT :

_uð0; tÞ ¼ _uBð0; tÞ ¼ j0ðtÞ. (96)

Furthermore, from Eqs. (50), (69) to (72) we have

_uð0; tÞ ¼ j0ðtÞ; 0otpT ;

_uð0; tÞ ¼ j0ðtÞ þ j0ð _uð0; t� TÞ � j0ðt� TÞÞ; t4T :
(97a,b)

Eqs. (97a, b) imply that for all t40, _uð0; tÞ ¼ j0ðtÞ. In addition, if j0ðtÞ is known on the boundary (see Table
1), then the solution satisfies the boundary condition at x ¼ 0. The same can be said about other cases, namely
if x ¼ 0 and I0 ¼ �1, then

a�ð0; tÞ ¼ j0ðtÞ; 0otpT ;

a�ð0; tÞ ¼ j0ðtÞ þ j0ða�ð0; t� TÞ � j0ðt� TÞÞ; t4T :
(98)

If x ¼ L and IL ¼ 1 then

_uðL; tÞ ¼ jLðtÞ; 0otpT ;

_uðL; tÞ ¼ jLðtÞ þ I0ð _uðL; t� TÞ � jLðt� TÞÞ; t4T :
(99)

if x ¼ L and IL ¼ �1, then

a�ðL; tÞ ¼ jLðtÞ; 0otpT ;

a�ðL; tÞ ¼ jLðtÞ þ I0ð�a�ðL; t� TÞ þ jLðt� TÞÞ; t4T :
(100)
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It is worth mentioning that the proof in this section does not depend on whether the boundary
velocity (or strain) is prescribed or not. What we have proved is that on both of the ends, the boundary
values of the solution are equal to a boundary function j0ðtÞ or jLðtÞ. Thus, if we have obtained the
boundary functions, either from prescribed functions or through the solution of other equations on
the boundaries (see Eqs. (11) and (12) and Case 3), we will ensure that the boundary conditions can then
be satisfied.

4.4. Verifying the satisfaction of the initial condition

Here, we shall show that qI ðx; tÞ satisfies the initial condition, and that qBðx; tÞ and qF ðx; tÞ satisfy zero initial
condition. First, from Eq. (65) we have

qI ðx; 0Þ ¼
1

2
Ic

~I1ðx� atÞ

~I2ðxþ atÞ

( )
t¼0

¼
1

2
Ic

~I1ðxÞ
~I2ðxÞ

( )
¼

I _uðxÞ

aI �ðxÞ

( )
. (101)

Eq. (101) indicates that, for all x 2 ½0;L�, qI ðx; tÞ satisfies the initial conditions.
Next, letting t ¼ 0 in Eq. (50) gives

Bðx; 0Þ ¼
I0j0ð�x=aÞHð�x=aÞ

jLð�ðL� xÞ=aÞHð�ðL� xÞ=aÞ

( )
¼

0

0

� �
. (102)

Thus,

qBðx; 0Þ ¼ IcBðx; 0Þ ¼ 0; 0pxpL. (103)

Finally, taking t ¼ 0 in Eq. (56) yields

f 1ðx; t� x=aÞ

f 2ðx; tþ x=aÞ

( )
t¼0

¼

Z x

0

f ðx;�ðx� xÞ=aÞ

0

� �
dxþ

Z L

x

0

f ðx;�ðx� xÞ=aÞ

( )
dx: (104)

According to Eqs. (52) and (53), we have f ðx;�ðx� xÞ=aÞ ¼
x4x

0 and f ðx;�ðx� xÞ=aÞ ¼
xox

0, so thatZ x

0

f ðx;�ðx� xÞ=aÞdx ¼ 0;

Z L

x

f ðx;�ðx� xÞ=aÞdx ¼ 0. (105)

Thus,

qF ðx; 0Þ ¼
1

2a
Ic

f 1ðx; t� x=aÞ

f 2ðx; tþ x=aÞ

( )
t¼0

¼ 0. (106)

Eqs. (101), (103), and (106) indicate

yðx; 0Þ ¼ qI ðx; 0Þ. (107)

Eq. (107) means that the solution satisfies the initial condition.

4.5. The relations between the velocity and strain

Eq. (74a,b) can be rewritten as

_uðx; tþ nTÞ

a�ðx; tþ nTÞ

( )
¼

_uðx; tþ ðn� 1ÞTÞ

a�ðx; tþ ðn� 1ÞTÞ

( )
þ Ic

q̄1ðx; tþ nT � x=aÞ

q̄2ðx; tþ nT þ x=aÞ

( )
, (108)
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where

q̄1ðx; tþ nT � x=aÞ

q̄2ðx; tþ nT þ x=aÞ

( )
�

B1ðtþ nT � x=aÞ

B2ðtþ nT þ x=aÞ

( )
þ

1

2a

I1ðx� aðtþ nTÞÞ

I2ðxþ aðtþ nTÞÞ

( )

þ
1

2a

f 1ðx; tþ nT � x=aÞ

f 2ðx; tþ nT þ x=aÞ

( )
. (109)

From Eq. (108), it is easy to find that

_uðx; tþ nTÞ þ a�ðx; tþ nTÞ ¼ _uðx; tþ ðn� 1ÞTÞ þ a�ðx; tþ ðn� 1ÞTÞ þ 2q̄2ðx; tþ nT þ L=aÞ,

_uðx; tþ nTÞ � a�ðx; tþ nTÞ ¼ _uðx; tþ ðn� 1ÞTÞ � a�ðx; tþ ðn� 1ÞTÞ þ 2q̄1ðx; tþ nT þ L=aÞ. (110)

This means that the sum and the difference of the velocity and strain satisfy another kind of recurrence
formula. On the other hand, from Eq. (109), the accumulative formula Eq. (80) can be rewritten as

yðx; tþ nTÞ ¼ Ic

F1ðx; t; nÞ

F2ðx; t; nÞ

( )
, (111)

where

F1ðx; t; nÞ �
Xn

i¼0

jn�i
0 q̄1ðx; tþ iT � x=aÞ,

F2ðx; t; nÞ �
Xn

i¼0

jn�i
0 q̄2ðx; tþ iT þ x=aÞ. (112a,b)

Thus, from Eqs. (4) and (16b), Eq. (111) can be written as

_uðx; tþ nTÞ

a�ðx; tþ nTÞ

( )
¼

F 1ðx; t; nÞ þ F2ðx; t; nÞ

�F 1ðx; t; nÞ þ F2ðx; t; nÞ

( )
. (113)

From Eq. (113), it is easy to obtain the following linear algebraic relations between the velocity and strain

_uðx; tþ nTÞ þ a�ðx; tþ nTÞ ¼ 2F 2ðx; t; nÞ,

_uðx; tþ nTÞ � a�ðx; tþ nTÞ ¼ 2F 1ðx; t; nÞ. (114)

In particular, on the boundary we have

_uð0; tþ nTÞ þ a�ð0; tþ nTÞ ¼ 2F2ð0; t; nÞ,

_uð0; tþ nTÞ � a�ð0; tþ nTÞ ¼ 2F1ð0; t; nÞ (115a,b)

and

_uðL; tþ nTÞ þ a�ðL; tþ nTÞ ¼ 2F 2ðL; t; nÞ,

_uðL; tþ nTÞ � a�ðL; tþ nTÞ ¼ 2F 1ðL; t; nÞ. (116a,b)

Eqs. (115a,b) and (116a,b) are very important in dealing with complex boundary conditions (see Case 3), for
they give the relations of the two variables in each phase. For example, if at x ¼ 0 the boundary condition is
given by such an equation as Eq. (11), we may choose one of the variables as the boundary function and
eliminating the other with the help of Eqs. (115a,b) or (116a,b), so that Eq. (11) becomes an equation with
only one unknown function. Solving the equation with one unknown either analytically or numerically, we
may obtain the boundary function that can be taken as the known function on the boundary to get further
solution of Eq. (2).
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Fig. 1. Rod subjected by an external excitation (Case 1).

Fig. 2. Rod with initial strain (Case 2).

Fig. 3. Rod acted by an impact object with initial velocity v0 (Case 3).
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5. Examples

In this section, four examples are presented for using the proposed approach to solve some complicated
problems (see Figs. 1–3). The first example describes a problem with Dirichlet boundary conditions. The
second example deals with an initial strain. The third example is a complicated one that presents elastic waves
due to an impact. The three examples could also be solved by using other methods that can be found in
textbooks. In addition, the forth example is presented to show that, in some simple cases, the proposed
method can arrive at the same analytical solution as by using the method of separation of variables.

5.1. Case 1. Simple boundary condition

In this case (see Fig. 1), the rod has zero initial condition and homogenous equation, one of the end is fixed
and the other end subject to a prescribed force p(t), which can be obtained from the derivative of the known
displacement function as described by the traditional Dirichlet boundary conditions, so that

qðx; tÞ ¼ IcBðx; tÞ; Iðx; tÞ ¼ Fðx; tÞ ¼ 0. (117)

The boundary functions at x ¼ 0 and x ¼ L are taken as the velocity and the strain, respectively.
Accordingly,

I0 ¼ 1; IL ¼ �1; j0 ¼ I0IL ¼ �1. (118)
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Eq. (33) is therefore of the form

yðx; tÞ ¼ �yðx; t� TÞHðt� TÞ þ IcBðx; tÞ. (119)

The boundary functions are

j0ðtÞ ¼ 0; jLðtÞ ¼ a�ðL; tÞ ¼ apðtÞ=EA, (120)

where A is the cross-sectional area of the rod.
From Eq. (50),

Bðx; tÞ ¼
B1ðt� x=aÞ

B2ðtþ x=aÞ

( )
¼
�jLðt� ðLþ xÞ=aÞ

jLðt� ðL� xÞ=aÞ

( )
¼

a

EA

�pðt� ðLþ xÞ=aÞ

pðt� ðL� xÞ=aÞ

( )
. (121)

With the recurrence formula, the solution can be expressed as

_uðx; tÞ

a�ðx; tÞ

( )
¼ �

_uðx; t� TÞ

a�ðx; t� TÞ

( )
Hðt� TÞ þ

a

EA

�pðt� ðLþ xÞ=aÞ þ pðt� ðL� xÞ=aÞ

pðt� ðLþ xÞ=aÞ þ pðt� ðL� xÞ=aÞ

( )
. (122)

With the accumulative formula Eq. (80), the solution is

_uðx; tþ nTÞ

a�ðx; tþ nTÞ

( )
¼

aE

A

Xn

i¼0

ð�1Þn�i
�pðtþ iT � ðLþ xÞ=aÞ þ pðtþ iT � ðL� xÞ=aÞ

pðtþ iT � ðLþ xÞ=aÞ þ pðtþ iT � ðL� xÞ=aÞ

( )
. (123)

5.2. Case 2. With initial strain

Let us consider the rod shown in Fig. 2. There is a constant initial strain �0 ¼ u0=L throughout the length of
the rod, and at time t ¼ 0, the initial strain vanishes suddenly. Since the governing equation in this case is
homogenous, we have qF ðx; tÞ ¼ 0. The boundary conditions are

_̄u0ðtÞ ¼ 0; �̄LðtÞ ¼ 0; t40. (124)

The initial conditions are

I _uðxÞ ¼ 0; I �ðxÞ ¼ �0 ¼ u0=L. (125)

Considering that qF ðx; tÞ ¼ 0, Eqs. (69) and (70) reduces to

yðx; tÞ ¼
qI ðx; tÞ þ qBðx; tÞ; 0ptpT ;

�yðx; t� TÞHðt� TÞ þ qBðx; tÞ; t4T :

(
(126)

In this case, the boundary functions are (see Eq. (124))

j0ðtÞ ¼ _uð0; tÞ ¼ 0; I0 ¼ 1;

jLðtÞ ¼ �ðL; tÞ ¼ 0; IL ¼ �1:
(127)

It follows that qBðx; tÞ ¼ 0. From Eq. (20a)

~I1ðxÞ
~I2ðxÞ

( )
¼
�a�0

a�0

( )
. (128)

Eq. (66) becomes

I1ðx� atÞ ¼
�a�0; 0oatpLþ x

a�0; Lþ xoatp2L

(
; I2ðxþ atÞ ¼

a�0; 0oatpL� x;

�a�0; L� xoatp2L:

(
(129)

Consequently, Eq. (126) reduces to

yðx; tÞ ¼ qI ðx; tÞ; 0ptpT . (130)
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The final results are

_uðx; tÞ

a�ðx; tÞ

( )
¼ qI ðx; tÞ ¼

a�0
2

Ic

�Gðat; 0;Lþ xÞ þGðat;Lþ x; 2LÞ

Gðat; 0;L� xÞ �Gðat;L� x; 2LÞ

( )
. (131)

In particular, at both ends, when 0ptpT , we have

_uð0; tÞ ¼ 0; a�ð0; tÞ ¼ a�0
1; 0ptpL=a;

�1; L=aotp2L=a;

(
a�ðL; tÞ ¼ 0; _uðL; tÞ ¼ �a�0. (132)

When t4T , qI ðx; tÞ vanishes, Eq. (70) become

yðx; tÞ ¼ �yðx; t� TÞ; t4T . (133)

Specifying L ¼ 2m, a ¼ 4000m/s and e0 ¼ 1/1000, then T ¼ 2L/a ¼ 1 s/1000. The velocities and the strains
at different positions are shown in Figs. 4 and 5.
5.3. Case 3. Impact at one end

In this case (plotted in Fig. 3), an impact object with an initial velocity v0 acts on the rod. During the impact,
the object moves with the rod until t ¼ Tp. The initial conditions in this case are

�ðx; 0Þ ¼ I �ðxÞ ¼ 0; _uðx; 0Þ ¼ I _uðxÞ ¼ 0; 0pxpL. (134)

One of the boundary conditions is _uð0; tÞ ¼ 0, and the other is given by

�ðL; tÞ ¼
�m €uðL; tÞ=EA; 0otoTp;

0; tXTp;

(
_uðL; 0Þ ¼ v0, (135)

where v0 is regarded as the initial value of the boundary velocity. m is the mass of the impact object.
Fig. 4. The calculated strains at different positions. – - – - – � at x ¼ 0.0, —— at x ¼ L/4, - - - - - at x ¼ L/2.



ARTICLE IN PRESS

Fig. 5. The calculated velocities at different positions. – - – - – � at x ¼ 0.0, —— at x ¼ L/4, - - - - - at x ¼ L/2.
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In this case, the boundary functions are taken as the velocity at both ends:

j0ðtÞ ¼ _uð0; tÞ ¼ 0; jLðtÞ ¼ _uðL; tÞ,

I0 ¼ 1; IL ¼ 1; j0 ¼ 1. (136)

Since the external force and the initial condition are both equal to zero:

qF ðx; tþ iTÞ ¼ 0; qI ðx; tÞ ¼ 0 for 0ptpT ; i ¼ 0; 1; 2; . . . . (137)

Thus, the accumulative formula given by Eq. (80) becomes

yðx; tþ nTÞ ¼
Xn

i¼0

qBðx; tþ iTÞ. (138)

From Eq. (115b), considering that

jLðtþ ði � 1ÞTÞ ¼
i¼0jLðt� TÞ ¼

toT
0, (139)

we have the relation

a�ðL; tþ nTÞ ¼ _uðL; tþ nTÞ � 2F1ðtþ nTÞ, (140)

where in the current case (see Eq. (112a))

F 1ðL; t; nÞ ¼ �
Xn�1
i¼0

_uðL; tþ iTÞ. (141)

Thus, during the impact, we have the following differential equation

€uðL; tþ nTÞ þ a _uðL; tþ nTÞ ¼ 2aF1ðL; t; nÞ; n ¼ 0; 1; . . . and 0ptþ nTpTp, (142)

where

a �
EA

am
. (143)
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Here we have, in practice, obtained a series of equations, of which the solutions in each phase are

_uðL; tþ nTÞ ¼ Cn e
�at þ 2a e�at

Z t

0

F 1ðL; x; nÞeax dx, (144)

where Cn is a constant. In the first phase n ¼ 0, with the initial condition _uðL; 0Þ ¼ v0, we have C0 ¼ �v0.
When n40, the following equation is used to determine Cn in order that the velocity might be
continuous:

_uðL; tþ nTÞjt¼0 ¼ _uðL; tþ ðn� 1ÞTÞjt¼T . (145)

Substituting Eq. (145) into Eq. (144) yields

Cn ¼ _uðL; tþ ðn� 1ÞTÞjt¼T . (146)

Here, we have shown that with the presented approach, the process to determine Cn is much simpler than
that by using d’Alembert’s solution. Since Eq. (145) is a general expression with respect to Cn with n40, we
can therefore write the entire solution of boundary velocity directly within the impact as

_uðL; tþ nTÞ ¼ _uðL; tþ ðn� 1ÞTÞjt¼T e�at � 2a e�at
Z t

0

Xn�1
i¼0

_uðL; tþ iTÞeax dx: (147)

Specially, the results in the first three phases are

_uðL; tÞ ¼ �v0 e
�at; 0ptoT ,

_uðL; tþ TÞ ¼ �v0 e
�atðe�aT � 2atÞ; Tpto2T ,

_uðL; tþ 2TÞ ¼ �v0fe
�aðtþTÞðe�aT � 2aTÞ � 2 e�at½ðatÞð1þ e�aT Þ � ðatÞ2�g; 2Tpto3T . (148)

Up to now, the boundary velocity has been a known function of time. The solution can be obtained directly
with Eq. (148), as shown in Case 1, since the problem has been the same as those with simple boundary
conditions.

5.4. Case 4. A simple example that can return to the classical solution

In this section, we consider a simple example that can be found in textbooks (e.g. Ref. [19]).
Example: A bar, fixed at both ends, has an initial displacement uðx; 0Þ ¼ 0, and has an initial velocity

_uðx; 0Þ ¼ v0 sinðnpx=LÞ, in which v0 is a constant and n is an integer. By using separation of the variables on in
the interval x 2 ½0;L�, the analytical solution for displacement is given by [19]

uðx; tÞ ¼
Lv0

npa
sin

npx

L

� �
sin

npat

L

� �
. (149)

We now solve it with the proposed method. In this special case F ¼ 0, and from Eq. (8) we have

I0 ¼ IL ¼ 1; j0 ¼ 1; _uð0; tÞ ¼ _uðL; tÞ ¼ 0,

j0ðtÞ ¼ jLðtÞ ¼ 0; B ¼ 0 8tX0. (150)

Thus, from Eq. (42a) and Eq. (42c) we have qBðx; tÞ ¼ 0; qF ðx; tÞ ¼ 0, then

qðx; tÞ ¼ qI ðx; tÞ ¼
1

2a
IcIðx; tÞ. (151)

Eq. (6a,b) becomes now

I _uðxÞ ¼ _uðx; 0Þ ¼ v0 sinðnpx=LÞ; I �ðxÞ ¼ �ðx; 0Þ ¼ 0. (1510)

Substituting (1510) into Eq. (20a,b) and Eq. (66), we arrive at

~I1ðxÞ ¼ ~I2ðxÞ ¼ v0 sinðnpx=LÞ (152)
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and

I1ðx� atÞ ¼ av0 sin
np
L
ðx� atÞ

� �
,

I2ðxþ atÞ ¼ av0 sin
np
L
ðxþ atÞ

� �
. (153)

From Eq. (65),

Iðx; tÞ ¼
I1ðx� atÞ

I2ðxþ atÞ

( )
¼ I1ðx� atÞ ¼ av0

sin
np
L
ðx� atÞ

� �
sin

np
L
ðxþ atÞ

� �
8><>:

9>=>;. (154)

Considering Eq. (16b), Eq. (42b) becomes

qðx; tÞ ¼ qI ðx; tÞ � vIcIðx; tÞ ¼ v0

sin
np
L
ðx� atÞ

� �
þ sin

np
L
ðxþ atÞ

� �
� sin

np
L
ðx� atÞ

� �
þ sin

np
L
ðxþ atÞ

� �
8><>:

9>=>;. (155)

Seeing that qI ðx; tÞ ¼ 0 for ðt42TÞ, Eqs. (74a,b) become

yðx; tÞ ¼ qI ðx; tÞ,

yðx; tþ nTÞ ¼ yðx; tþ ðn� 1ÞTÞ; n ¼ 1; 2; . . . . (156)

From Eqs. (155) and (156), we conclude that

_uðx; tÞ ¼ v0 sin
np
L
ðx� atÞ

� �
þ v0 sin

np
L
ðxþ atÞ

� �
; 8t40. (157)

The integral of the velocity over [0,t] results in the displacement

uðx; tÞ ¼

Z t

0

_uðx; tÞdt,

¼
uðx;0Þ¼0

�
Lv0

npa
cos

np
L
ðxþ atÞ

� �
� cos

np
L
ðx� atÞ

� �� �
¼

Lv0

npa
sin

npx

L

� �
sin

npat

L

� �
. (158)

Eq. (158) presents the same results as Eq. (149).

6. Conclusions

In the paper, we have obtained an analytical solution of the one-dimensional wave equation governing the
propagation of the longitudinal elastic waves in a rod in the time domain, and verified that the solution
satisfies the governing equations the initial conditions and the boundary conditions. The method to perform
the inverse Laplace transform is somewhat different from conventional approaches, which plays an important
role in obtaining the solution. According to the previous discussions, it can be concluded that the presented
solution has the following four major advantages.

First, it is a unified solution. The solution consists of four terms, namely the historical term, the forced term,
the initial term and the boundary term. It is important that the meaning of the four terms is physically clear.
Unlike the method of separation of variables, d’Alembert’s solution, and Green’s function, there are no needs
to carry out any transformation for the dependent variables. Moreover, in contrast to d’Alembert’s solution,
although the proposed solution has a form similar to the wave functions, we deal with the velocity or strain
directly instead of the indirect d’Alembert’s wave functions.

Second, the solution is in a final form expressed with the recurrence formula and accumulative formula. One
can use one of the two formulas to obtain the solution directly without any additional skillful mathematic
derivation needed. More precisely, at any time instant the solution consists of finite terms, which implies that
to obtain an exact solution of transient problem, only a few terms need to be calculated. That is to say, no
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truncation error occurs, as any series solution would encounter. Furthermore, the solution in a final form
makes the computer programming to calculate the systems much simpler.

Third, the unified solution makes it possible to solve the problems with complex boundary conditions
directly; such as at one end the velocity and strain are restricted with an equation. This is achieved by the two
boundary functions that are introduced to express the boundary values of the dependent variables at both
ends. Based on this, the form of the solution is independent of what the boundary functions represent
(velocities or strains), even regardless of whether they are prescribed or not. Since some additional relations
between the boundary values have been established in this paper, we have enough equations to determine the
boundary functions.

Fourth, the final solution paves the way for the analysis of complex structural systems directly in the time
domain. In such complex structural systems, e.g. the system consisting of several uniform rods, or a pipe
carrying fluid, a rod could be regarded as a component or an element (in the sense of the finite element
method). In these cases, the proposed solution provides an exact interpolation function, since the velocity and
strain within the rod are expressed by the boundary functions.

Although the present unified solution is merely for such rod with uniform cross section, it could also be used
to certain kind of non-uniform rods for they can be reduced to the same equation through transform of
variables (see e.g. Ref. [18]). It is more important that the approach proposed in the present paper could also
be used for other problems of which the governing equation is one-dimension wave equation without any
difficulties.
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